如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求:二面角A-PD-C的余弦值(用空间向量方法)

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 11:17:40

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求:二面角A-PD-C的余弦值(用空间向量方法)
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求:二面角A-PD-C的余弦值
(用空间向量方法)

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求:二面角A-PD-C的余弦值(用空间向量方法)
以A为原点,AB、AD、AP为X轴、Y轴、Z轴建立空间坐标系.
A(0,0,0),B(1,0,0),C(1/2,√3/2,0),D(0,2√3/3,0),P(0,0,1),
E(1/4,√3/4,1/2),
设平面PDC的法向量n1=(x1,y1,1),
向量PD=(0,2√3/3,-1),向量PC=(1/2,√3/2,-1),
向量PD·n1=2y1√3/3-1=0,
y1=√3/2,
向量PC·n1=x1/2+√3y1/2-1=0,
x1/2=1/4,
x1=1/2,
i法向量n1=(1/2,√3/2,1),
而AB⊥平面PAD,
∴向量AB是平面PAD的法向量,
向量AB=(1,0,0),
向量AB·n1=1/2,
|AB|=1,
|n1|=√2,
设向量AB和n1所成角为θ,
cosθ=AB·n1/(|AB|*|n1|)=(1/2)/(√2*1)=√2/4,
∴二面角A-PD-C的余弦值为√2/4.
可以不用向量法,在底面作CM⊥AD,垂足M,在平面PAD止作MN⊥PD,连结CN,则〈CNM就是二面角A-PD-C的平面角,
MC=1/2,MN=√7/14,
NC=√14/7,
cos

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标, 在底面为正方形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,则四棱锥P-ABCD的体积为 如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,E,F分别为PD,AB的中点,且PA=AB=1,BC=2.求四棱锥E-ABCD的体积 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出图中有哪些是直角三角形 如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BD,PA的中点,PA=AB=2 如图,在四棱锥P-ABCD中,底面为直角梯形,AD‖BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=如图,在四棱锥P-ABCD中,底面为直角梯形,AD‖BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.求(1)四棱 如图,在四棱锥P一ABCD中,底面ABCD是菱形,PA垂直ABcD,M为PD的中点1求证PB 如图,在正四棱锥P-ABCD中,PA=2,侧棱PA与底面所成角为60度,求它的体积 在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥平面ABCD,AB=根号3 在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出哪些三角形是直角三角形? 如图,在底面是矩形的四棱锥 P-ABCD 中,PA⊥底面 ABCD,PA=AB=1,BC=2,(如图,在底面是矩形的四棱锥 P-ABCD 中,PA⊥底面 ABCD,PA=AB=1,BC=2,(1)求证:平面 PDC⊥平面 PAD;(2)若 E 是 PD 的中点,求异面 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.当平面PBC⊥面PDC时,求PA长 如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD=a,又M,N分别是AB,PC的中点,求证平面PMC⊥平面PCD 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD,PA=AD.M为AB的中点.求证:平面PMC⊥平面PCD 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,若PA=AB,求二面角A-PD-B的余弦值. 如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB‖DC,AB⊥BC,PA=AB=BC,点E在棱PB上,PE=2E1.求证:平面PAB⊥平面PCB;2.求证:PD‖平面EAC.如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD。底面ABCD为梯形,A 如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°